root/thread_win32.c

/* [previous][next][first][last][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. w32_error
  2. w32_mutex_lock
  3. w32_mutex_create
  4. gvl_acquire
  5. gvl_release
  6. gvl_yield
  7. gvl_init
  8. gvl_destroy
  9. ruby_thread_from_native
  10. ruby_thread_set_native
  11. Init_native_thread
  12. w32_set_event
  13. w32_reset_event
  14. w32_wait_events
  15. rb_w32_wait_events_blocking
  16. rb_w32_wait_events
  17. w32_close_handle
  18. w32_resume_thread
  19. w32_create_thread
  20. rb_w32_sleep
  21. rb_w32_Sleep
  22. native_sleep
  23. native_mutex_lock
  24. native_mutex_unlock
  25. native_mutex_trylock
  26. native_mutex_initialize
  27. native_mutex_destroy
  28. native_cond_signal
  29. native_cond_broadcast
  30. native_cond_timedwait_ms
  31. native_cond_wait
  32. abs_timespec_to_timeout_ms
  33. native_cond_timedwait
  34. native_cond_timeout
  35. native_cond_initialize
  36. native_cond_destroy
  37. ruby_init_stack
  38. native_thread_init_stack
  39. native_thread_destroy
  40. thread_start_func_1
  41. native_thread_create
  42. native_thread_join
  43. native_thread_apply_priority
  44. native_fd_select
  45. rb_w32_check_interrupt
  46. ubf_handle
  47. timer_thread_func
  48. rb_thread_wakeup_timer_thread
  49. rb_thread_create_timer_thread
  50. native_stop_timer_thread
  51. native_reset_timer_thread
  52. ruby_stack_overflowed_p
  53. rb_w32_stack_overflow_handler
  54. ruby_alloca_chkstk
  55. rb_reserved_fd_p
  56. rb_nativethread_self
  57. native_set_thread_name

/* -*-c-*- */
/**********************************************************************

  thread_win32.c -

  $Author: nobu $

  Copyright (C) 2004-2007 Koichi Sasada

**********************************************************************/

#ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION

#include <process.h>

#define TIME_QUANTUM_USEC (10 * 1000)
#define RB_CONDATTR_CLOCK_MONOTONIC 1 /* no effect */

#undef Sleep

#define native_thread_yield() Sleep(0)
#define unregister_ubf_list(th)

static volatile DWORD ruby_native_thread_key = TLS_OUT_OF_INDEXES;

static int w32_wait_events(HANDLE *events, int count, DWORD timeout, rb_thread_t *th);
static int native_mutex_lock(rb_nativethread_lock_t *lock);
static int native_mutex_unlock(rb_nativethread_lock_t *lock);

static void
w32_error(const char *func)
{
    LPVOID lpMsgBuf;
    DWORD err = GetLastError();
    if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
                      FORMAT_MESSAGE_FROM_SYSTEM |
                      FORMAT_MESSAGE_IGNORE_INSERTS,
                      NULL,
                      err,
                      MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US),
                      (LPTSTR) & lpMsgBuf, 0, NULL) == 0)
        FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
                      FORMAT_MESSAGE_FROM_SYSTEM |
                      FORMAT_MESSAGE_IGNORE_INSERTS,
                      NULL,
                      err,
                      MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
                      (LPTSTR) & lpMsgBuf, 0, NULL);
    rb_bug("%s: %s", func, (char*)lpMsgBuf);
}

static int
w32_mutex_lock(HANDLE lock)
{
    DWORD result;
    while (1) {
        thread_debug("native_mutex_lock: %p\n", lock);
        result = w32_wait_events(&lock, 1, INFINITE, 0);
        switch (result) {
          case WAIT_OBJECT_0:
            /* get mutex object */
            thread_debug("acquire mutex: %p\n", lock);
            return 0;
          case WAIT_OBJECT_0 + 1:
            /* interrupt */
            errno = EINTR;
            thread_debug("acquire mutex interrupted: %p\n", lock);
            return 0;
          case WAIT_TIMEOUT:
            thread_debug("timeout mutex: %p\n", lock);
            break;
          case WAIT_ABANDONED:
            rb_bug("win32_mutex_lock: WAIT_ABANDONED");
            break;
          default:
            rb_bug("win32_mutex_lock: unknown result (%ld)", result);
            break;
        }
    }
    return 0;
}

static HANDLE
w32_mutex_create(void)
{
    HANDLE lock = CreateMutex(NULL, FALSE, NULL);
    if (lock == NULL) {
        w32_error("native_mutex_initialize");
    }
    return lock;
}

#define GVL_DEBUG 0

static void
gvl_acquire(rb_vm_t *vm, rb_thread_t *th)
{
    w32_mutex_lock(vm->gvl.lock);
    if (GVL_DEBUG) fprintf(stderr, "gvl acquire (%p): acquire\n", th);
}

static void
gvl_release(rb_vm_t *vm)
{
    ReleaseMutex(vm->gvl.lock);
}

static void
gvl_yield(rb_vm_t *vm, rb_thread_t *th)
{
  gvl_release(th->vm);
  native_thread_yield();
  gvl_acquire(vm, th);
}

static void
gvl_init(rb_vm_t *vm)
{
    if (GVL_DEBUG) fprintf(stderr, "gvl init\n");
    vm->gvl.lock = w32_mutex_create();
}

static void
gvl_destroy(rb_vm_t *vm)
{
    if (GVL_DEBUG) fprintf(stderr, "gvl destroy\n");
    CloseHandle(vm->gvl.lock);
}

static rb_thread_t *
ruby_thread_from_native(void)
{
    return TlsGetValue(ruby_native_thread_key);
}

static int
ruby_thread_set_native(rb_thread_t *th)
{
    return TlsSetValue(ruby_native_thread_key, th);
}

void
Init_native_thread(void)
{
    rb_thread_t *th = GET_THREAD();

    ruby_native_thread_key = TlsAlloc();
    ruby_thread_set_native(th);
    DuplicateHandle(GetCurrentProcess(),
                    GetCurrentThread(),
                    GetCurrentProcess(),
                    &th->thread_id, 0, FALSE, DUPLICATE_SAME_ACCESS);

    th->native_thread_data.interrupt_event = CreateEvent(0, TRUE, FALSE, 0);

    thread_debug("initial thread (th: %p, thid: %p, event: %p)\n",
                 th, GET_THREAD()->thread_id,
                 th->native_thread_data.interrupt_event);
}

static void
w32_set_event(HANDLE handle)
{
    if (SetEvent(handle) == 0) {
        w32_error("w32_set_event");
    }
}

static void
w32_reset_event(HANDLE handle)
{
    if (ResetEvent(handle) == 0) {
        w32_error("w32_reset_event");
    }
}

static int
w32_wait_events(HANDLE *events, int count, DWORD timeout, rb_thread_t *th)
{
    HANDLE *targets = events;
    HANDLE intr;
    DWORD ret;

    thread_debug("  w32_wait_events events:%p, count:%d, timeout:%ld, th:%p\n",
                 events, count, timeout, th);
    if (th && (intr = th->native_thread_data.interrupt_event)) {
        gvl_acquire(th->vm, th);
        if (intr == th->native_thread_data.interrupt_event) {
            w32_reset_event(intr);
            if (RUBY_VM_INTERRUPTED(th)) {
                w32_set_event(intr);
            }

            targets = ALLOCA_N(HANDLE, count + 1);
            memcpy(targets, events, sizeof(HANDLE) * count);

            targets[count++] = intr;
            thread_debug("  * handle: %p (count: %d, intr)\n", intr, count);
        }
        gvl_release(th->vm);
    }

    thread_debug("  WaitForMultipleObjects start (count: %d)\n", count);
    ret = WaitForMultipleObjects(count, targets, FALSE, timeout);
    thread_debug("  WaitForMultipleObjects end (ret: %lu)\n", ret);

    if (ret == (DWORD)(WAIT_OBJECT_0 + count - 1) && th) {
        errno = EINTR;
    }
    if (ret == WAIT_FAILED && THREAD_DEBUG) {
        int i;
        DWORD dmy;
        for (i = 0; i < count; i++) {
            thread_debug("  * error handle %d - %s\n", i,
                         GetHandleInformation(targets[i], &dmy) ? "OK" : "NG");
        }
    }
    return ret;
}

static void ubf_handle(void *ptr);
#define ubf_select ubf_handle

int
rb_w32_wait_events_blocking(HANDLE *events, int num, DWORD timeout)
{
    return w32_wait_events(events, num, timeout, ruby_thread_from_native());
}

int
rb_w32_wait_events(HANDLE *events, int num, DWORD timeout)
{
    int ret;

    BLOCKING_REGION(ret = rb_w32_wait_events_blocking(events, num, timeout),
                    ubf_handle, ruby_thread_from_native(), FALSE);
    return ret;
}

static void
w32_close_handle(HANDLE handle)
{
    if (CloseHandle(handle) == 0) {
        w32_error("w32_close_handle");
    }
}

static void
w32_resume_thread(HANDLE handle)
{
    if (ResumeThread(handle) == (DWORD)-1) {
        w32_error("w32_resume_thread");
    }
}

#ifdef _MSC_VER
#define HAVE__BEGINTHREADEX 1
#else
#undef HAVE__BEGINTHREADEX
#endif

#ifdef HAVE__BEGINTHREADEX
#define start_thread (HANDLE)_beginthreadex
#define thread_errno errno
typedef unsigned long (__stdcall *w32_thread_start_func)(void*);
#else
#define start_thread CreateThread
#define thread_errno rb_w32_map_errno(GetLastError())
typedef LPTHREAD_START_ROUTINE w32_thread_start_func;
#endif

static HANDLE
w32_create_thread(DWORD stack_size, w32_thread_start_func func, void *val)
{
    return start_thread(0, stack_size, func, val, CREATE_SUSPENDED, 0);
}

int
rb_w32_sleep(unsigned long msec)
{
    return w32_wait_events(0, 0, msec, ruby_thread_from_native());
}

int WINAPI
rb_w32_Sleep(unsigned long msec)
{
    int ret;

    BLOCKING_REGION(ret = rb_w32_sleep(msec),
                    ubf_handle, ruby_thread_from_native(), FALSE);
    return ret;
}

static void
native_sleep(rb_thread_t *th, struct timeval *tv)
{
    const volatile DWORD msec = (tv) ?
        (DWORD)(tv->tv_sec * 1000 + tv->tv_usec / 1000) : INFINITE;

    GVL_UNLOCK_BEGIN();
    {
        DWORD ret;

        native_mutex_lock(&th->interrupt_lock);
        th->unblock.func = ubf_handle;
        th->unblock.arg = th;
        native_mutex_unlock(&th->interrupt_lock);

        if (RUBY_VM_INTERRUPTED(th)) {
            /* interrupted.  return immediate */
        }
        else {
            thread_debug("native_sleep start (%lu)\n", msec);
            ret = w32_wait_events(0, 0, msec, th);
            thread_debug("native_sleep done (%lu)\n", ret);
        }

        native_mutex_lock(&th->interrupt_lock);
        th->unblock.func = 0;
        th->unblock.arg = 0;
        native_mutex_unlock(&th->interrupt_lock);
    }
    GVL_UNLOCK_END();
}

static int
native_mutex_lock(rb_nativethread_lock_t *lock)
{
#if USE_WIN32_MUTEX
    w32_mutex_lock(lock->mutex);
#else
    EnterCriticalSection(&lock->crit);
#endif
    return 0;
}

static int
native_mutex_unlock(rb_nativethread_lock_t *lock)
{
#if USE_WIN32_MUTEX
    thread_debug("release mutex: %p\n", lock->mutex);
    return ReleaseMutex(lock->mutex);
#else
    LeaveCriticalSection(&lock->crit);
    return 0;
#endif
}

static int
native_mutex_trylock(rb_nativethread_lock_t *lock)
{
#if USE_WIN32_MUTEX
    int result;
    thread_debug("native_mutex_trylock: %p\n", lock->mutex);
    result = w32_wait_events(&lock->mutex, 1, 1, 0);
    thread_debug("native_mutex_trylock result: %d\n", result);
    switch (result) {
      case WAIT_OBJECT_0:
        return 0;
      case WAIT_TIMEOUT:
        return EBUSY;
    }
    return EINVAL;
#else
    return TryEnterCriticalSection(&lock->crit) == 0;
#endif
}

static void
native_mutex_initialize(rb_nativethread_lock_t *lock)
{
#if USE_WIN32_MUTEX
    lock->mutex = w32_mutex_create();
    /* thread_debug("initialize mutex: %p\n", lock->mutex); */
#else
    InitializeCriticalSection(&lock->crit);
#endif
}

static void
native_mutex_destroy(rb_nativethread_lock_t *lock)
{
#if USE_WIN32_MUTEX
    w32_close_handle(lock->mutex);
#else
    DeleteCriticalSection(&lock->crit);
#endif
}

struct cond_event_entry {
    struct cond_event_entry* next;
    struct cond_event_entry* prev;
    HANDLE event;
};

static void
native_cond_signal(rb_nativethread_cond_t *cond)
{
    /* cond is guarded by mutex */
    struct cond_event_entry *e = cond->next;
    struct cond_event_entry *head = (struct cond_event_entry*)cond;

    if (e != head) {
        struct cond_event_entry *next = e->next;
        struct cond_event_entry *prev = e->prev;

        prev->next = next;
        next->prev = prev;
        e->next = e->prev = e;

        SetEvent(e->event);
    }
}

static void
native_cond_broadcast(rb_nativethread_cond_t *cond)
{
    /* cond is guarded by mutex */
    struct cond_event_entry *e = cond->next;
    struct cond_event_entry *head = (struct cond_event_entry*)cond;

    while (e != head) {
        struct cond_event_entry *next = e->next;
        struct cond_event_entry *prev = e->prev;

        SetEvent(e->event);

        prev->next = next;
        next->prev = prev;
        e->next = e->prev = e;

        e = next;
    }
}


static int
native_cond_timedwait_ms(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex, unsigned long msec)
{
    DWORD r;
    struct cond_event_entry entry;
    struct cond_event_entry *head = (struct cond_event_entry*)cond;

    entry.event = CreateEvent(0, FALSE, FALSE, 0);

    /* cond is guarded by mutex */
    entry.next = head;
    entry.prev = head->prev;
    head->prev->next = &entry;
    head->prev = &entry;

    native_mutex_unlock(mutex);
    {
        r = WaitForSingleObject(entry.event, msec);
        if ((r != WAIT_OBJECT_0) && (r != WAIT_TIMEOUT)) {
            rb_bug("native_cond_wait: WaitForSingleObject returns %lu", r);
        }
    }
    native_mutex_lock(mutex);

    entry.prev->next = entry.next;
    entry.next->prev = entry.prev;

    w32_close_handle(entry.event);
    return (r == WAIT_OBJECT_0) ? 0 : ETIMEDOUT;
}

static int
native_cond_wait(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex)
{
    return native_cond_timedwait_ms(cond, mutex, INFINITE);
}

static unsigned long
abs_timespec_to_timeout_ms(const struct timespec *ts)
{
    struct timeval tv;
    struct timeval now;

    gettimeofday(&now, NULL);
    tv.tv_sec = ts->tv_sec;
    tv.tv_usec = ts->tv_nsec / 1000;

    if (!rb_w32_time_subtract(&tv, &now))
        return 0;

    return (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
}

static int
native_cond_timedwait(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex, const struct timespec *ts)
{
    unsigned long timeout_ms;

    timeout_ms = abs_timespec_to_timeout_ms(ts);
    if (!timeout_ms)
        return ETIMEDOUT;

    return native_cond_timedwait_ms(cond, mutex, timeout_ms);
}

static struct timespec
native_cond_timeout(rb_nativethread_cond_t *cond, struct timespec timeout_rel)
{
    int ret;
    struct timeval tv;
    struct timespec timeout;
    struct timespec now;

    ret = gettimeofday(&tv, 0);
    if (ret != 0)
        rb_sys_fail(0);
    now.tv_sec = tv.tv_sec;
    now.tv_nsec = tv.tv_usec * 1000;

    timeout.tv_sec = now.tv_sec;
    timeout.tv_nsec = now.tv_nsec;
    timeout.tv_sec += timeout_rel.tv_sec;
    timeout.tv_nsec += timeout_rel.tv_nsec;

    if (timeout.tv_nsec >= 1000*1000*1000) {
        timeout.tv_sec++;
        timeout.tv_nsec -= 1000*1000*1000;
    }

    if (timeout.tv_sec < now.tv_sec)
        timeout.tv_sec = TIMET_MAX;

    return timeout;
}

static void
native_cond_initialize(rb_nativethread_cond_t *cond, int flags)
{
    cond->next = (struct cond_event_entry *)cond;
    cond->prev = (struct cond_event_entry *)cond;
}

static void
native_cond_destroy(rb_nativethread_cond_t *cond)
{
    /* */
}

void
ruby_init_stack(volatile VALUE *addr)
{
}

#define CHECK_ERR(expr) \
    {if (!(expr)) {rb_bug("err: %lu - %s", GetLastError(), #expr);}}

static void
native_thread_init_stack(rb_thread_t *th)
{
    MEMORY_BASIC_INFORMATION mi;
    char *base, *end;
    DWORD size, space;

    CHECK_ERR(VirtualQuery(&mi, &mi, sizeof(mi)));
    base = mi.AllocationBase;
    end = mi.BaseAddress;
    end += mi.RegionSize;
    size = end - base;
    space = size / 5;
    if (space > 1024*1024) space = 1024*1024;
    th->machine.stack_start = (VALUE *)end - 1;
    th->machine.stack_maxsize = size - space;
}

#ifndef InterlockedExchangePointer
#define InterlockedExchangePointer(t, v) \
    (void *)InterlockedExchange((long *)(t), (long)(v))
#endif
static void
native_thread_destroy(rb_thread_t *th)
{
    HANDLE intr = InterlockedExchangePointer(&th->native_thread_data.interrupt_event, 0);
    thread_debug("close handle - intr: %p, thid: %p\n", intr, th->thread_id);
    w32_close_handle(intr);
}

static unsigned long __stdcall
thread_start_func_1(void *th_ptr)
{
    rb_thread_t *th = th_ptr;
    volatile HANDLE thread_id = th->thread_id;

    native_thread_init_stack(th);
    th->native_thread_data.interrupt_event = CreateEvent(0, TRUE, FALSE, 0);

    /* run */
    thread_debug("thread created (th: %p, thid: %p, event: %p)\n", th,
                 th->thread_id, th->native_thread_data.interrupt_event);

    thread_start_func_2(th, th->machine.stack_start, rb_ia64_bsp());

    w32_close_handle(thread_id);
    thread_debug("thread deleted (th: %p)\n", th);
    return 0;
}

static int
native_thread_create(rb_thread_t *th)
{
    size_t stack_size = 4 * 1024; /* 4KB is the minimum commit size */
    th->thread_id = w32_create_thread(stack_size, thread_start_func_1, th);

    if ((th->thread_id) == 0) {
        return thread_errno;
    }

    w32_resume_thread(th->thread_id);

    if (THREAD_DEBUG) {
        Sleep(0);
        thread_debug("create: (th: %p, thid: %p, intr: %p), stack size: %"PRIdSIZE"\n",
                     th, th->thread_id,
                     th->native_thread_data.interrupt_event, stack_size);
    }
    return 0;
}

static void
native_thread_join(HANDLE th)
{
    w32_wait_events(&th, 1, INFINITE, 0);
}

#if USE_NATIVE_THREAD_PRIORITY

static void
native_thread_apply_priority(rb_thread_t *th)
{
    int priority = th->priority;
    if (th->priority > 0) {
        priority = THREAD_PRIORITY_ABOVE_NORMAL;
    }
    else if (th->priority < 0) {
        priority = THREAD_PRIORITY_BELOW_NORMAL;
    }
    else {
        priority = THREAD_PRIORITY_NORMAL;
    }

    SetThreadPriority(th->thread_id, priority);
}

#endif /* USE_NATIVE_THREAD_PRIORITY */

int rb_w32_select_with_thread(int, fd_set *, fd_set *, fd_set *, struct timeval *, void *);     /* @internal */

static int
native_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout, rb_thread_t *th)
{
    fd_set *r = NULL, *w = NULL, *e = NULL;
    if (readfds) {
        rb_fd_resize(n - 1, readfds);
        r = rb_fd_ptr(readfds);
    }
    if (writefds) {
        rb_fd_resize(n - 1, writefds);
        w = rb_fd_ptr(writefds);
    }
    if (exceptfds) {
        rb_fd_resize(n - 1, exceptfds);
        e = rb_fd_ptr(exceptfds);
    }
    return rb_w32_select_with_thread(n, r, w, e, timeout, th);
}

/* @internal */
int
rb_w32_check_interrupt(rb_thread_t *th)
{
    return w32_wait_events(0, 0, 0, th);
}

static void
ubf_handle(void *ptr)
{
    rb_thread_t *th = (rb_thread_t *)ptr;
    thread_debug("ubf_handle: %p\n", th);

    w32_set_event(th->native_thread_data.interrupt_event);
}

static struct {
    HANDLE id;
    HANDLE lock;
} timer_thread;
#define TIMER_THREAD_CREATED_P() (timer_thread.id != 0)

static unsigned long __stdcall
timer_thread_func(void *dummy)
{
    thread_debug("timer_thread\n");
    while (WaitForSingleObject(timer_thread.lock, TIME_QUANTUM_USEC/1000) ==
           WAIT_TIMEOUT) {
        timer_thread_function(dummy);
    }
    thread_debug("timer killed\n");
    return 0;
}

void
rb_thread_wakeup_timer_thread(void)
{
    /* do nothing */
}

static void
rb_thread_create_timer_thread(void)
{
    if (timer_thread.id == 0) {
        if (!timer_thread.lock) {
            timer_thread.lock = CreateEvent(0, TRUE, FALSE, 0);
        }
        timer_thread.id = w32_create_thread(1024 + (THREAD_DEBUG ? BUFSIZ : 0),
                                            timer_thread_func, 0);
        w32_resume_thread(timer_thread.id);
    }
}

static int
native_stop_timer_thread(void)
{
    int stopped = --system_working <= 0;
    if (stopped) {
        SetEvent(timer_thread.lock);
        native_thread_join(timer_thread.id);
        CloseHandle(timer_thread.lock);
        timer_thread.lock = 0;
    }
    return stopped;
}

static void
native_reset_timer_thread(void)
{
    if (timer_thread.id) {
        CloseHandle(timer_thread.id);
        timer_thread.id = 0;
    }
}

int
ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr)
{
    return rb_thread_raised_p(th, RAISED_STACKOVERFLOW);
}

#if defined(__MINGW32__)
LONG WINAPI
rb_w32_stack_overflow_handler(struct _EXCEPTION_POINTERS *exception)
{
    if (exception->ExceptionRecord->ExceptionCode == EXCEPTION_STACK_OVERFLOW) {
        rb_thread_raised_set(GET_THREAD(), RAISED_STACKOVERFLOW);
        raise(SIGSEGV);
    }
    return EXCEPTION_CONTINUE_SEARCH;
}
#endif

#ifdef RUBY_ALLOCA_CHKSTK
void
ruby_alloca_chkstk(size_t len, void *sp)
{
    if (ruby_stack_length(NULL) * sizeof(VALUE) >= len) {
        rb_thread_t *th = GET_THREAD();
        if (!rb_thread_raised_p(th, RAISED_STACKOVERFLOW)) {
            rb_thread_raised_set(th, RAISED_STACKOVERFLOW);
            rb_exc_raise(sysstack_error);
        }
    }
}
#endif
int
rb_reserved_fd_p(int fd)
{
    return 0;
}

rb_nativethread_id_t
rb_nativethread_self(void)
{
    return GetCurrentThread();
}

static void
native_set_thread_name(rb_thread_t *th)
{
}

#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */

/* [previous][next][first][last][top][bottom][index][help] */